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We identify the statistical characterizers of congestion and decongestion for message transport in model
communication lattices. These turn out to be the travel time distributions, which are Gaussian in the congested
phase, and logarithmic normal in the decongested phase. Our results are demonstrated for two-dimensional
lattices, such the Waxman graph, and for lattices with local clustering and geographic separations, gradient
connections, as well as for a one-dimensional ring lattice with random assortative connections. The behavior of
the distribution identifies the congested and decongested phase correctly for these distinct network topologies
and decongestion strategies. The waiting time distributions of the systems also show identical signatures of the
congested and decongested phases. The distributions are explained using a stochastic differential equation to
model the transport.

DOI: 10.1103/PhysRevE.81.046109 PACS number�s�: 89.75.Hc

I. INTRODUCTION

Investigations of traffic flows on substrates of various to-
pologies have been a topic of recent research interest �1�.
Congestion effects can occur in real networks such as tele-
phone networks, computer networks, and the internet due to
various factors such as capacity, bandwidth, and network to-
pology �2�. These lead to deterioration of the service quality
experienced by users due to an increase in network load.
Congestion and decongestion transitions can be seen in such
systems. Statistical characterizers which can identify the
state of the network, whether congested or decongested, can
be of practical utility. In this paper, we identify statistical
characterizers which carry the signature of the state of con-
gestion or decongestion of the network.

The statistical characterizer which carries the signature of
the congested or decongested phase is identified to be the
travel time distribution of the messages. The travel time dis-
tribution has been studied earlier in the context of vehicular
traffic �3�, server traffic �4� and the internet �5�. Hence the
travel time distribution can be regarded as a useful statistical
characterizer of transport. In our model networks, the travel
time is defined to be the time required for a message to travel
from source to target, including the time spent waiting at
congested hubs. This distribution turns out to be normal or
Gaussian in the congested phase and logarithmic normal in
the decongested phase.

We demonstrate that the travel time distribution is able to
identify correctly the congested or decongested state in the
case of two-dimensional �2D� model networks, such as the
Waxman topology network, a popular model for internet to-
pology �6�, as well as for a network with local clustering �7�,
and its variants with gradient connections �8�. The same

characterizer is able to distinguish between the congested
and decongested phases in a network with one-dimensional
�1D� ring geometry. Thus, the travel time distribution is a
robust characterizer of the congested or decongested phase.
The nature of the distributions can be explained using sto-
chastic differential equations to model the transport.

II. 2D MODEL NETWORKS

We first consider models based on 2D lattices. We note
that communication networks based on two-dimensional lat-
tices have been considered earlier in the context of search
algorithms �9� and of network traffic with routers and hosts
�10,11� and have been observed to reproduce realistic fea-
tures of internet traffic.

The first network based on a 2D geometry is the Waxman
graph �6�, which incorporates the distance dependence in
link formation which is characteristic of real world networks
�12� and has been widely used to model the topology of
intradomain networks �13�. We consider the case where the
Waxman graphs are generated on a rectangular coordinate
grid of side L with the probability P�a ,b� of an edge from
node a to node b given by

P�a,b� = � exp�−
d

�M
� , �1�

where the parameters 0�� , ��1, d is the Euclidean dis-
tance from a to b, and M =�2�L is the maximum distance
between any two nodes �6�. Large values of � result in
graphs with larger link densities and small values of � in-
crease the density of short links as compared to the longer
ones. A topology similar to Waxman graphs is generated by
selecting randomly a predetermined number Nw of nodes in
the 2D lattice for generating the edges. Additionally, each
node of the lattice has a connection to its nearest neighbors
�see Fig. 1�a��.

The second network that we study is a model which in-
corporates local clustering and geographic separations devel-
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oped in Ref. �7�. As shown in Fig. 1�b�, this network consists
of a 2D lattice with nodes and hubs, where the hubs are
randomly located on the lattice and are connected to all
nodes inside their given area of influence, a square of side
2a. In our simulation, we set a=3. No two hubs are sepa-
rated by less than a minimum distance, dmin. Here we choose
dmin=1. For both the Waxman graph and locally clustered 2D
network, the distance between a randomly chosen source
S�is , js� and target T�it , jt� is given by the Manhattan dis-
tance Dst= �is− it�+ �js− jt�. We set free boundary conditions.
The message holding capacity of ordinary nodes as well as
the hubs is unity. Thus every node �including the hubs� can
process one message at a time. The routing algorithm for the
messages is described in the next section.

Routing algorithm, congestion, and decongestion

A given number of messages Nm are allowed to travel on
these lattices between fixed source target pairs by a distance
based routing algorithm. In the case of the clustered lattice, a

node which holds a message looks for a hub in the direction
of the target which is nearest to itself and routes the message
to it �7,8�. Consider a message that starts from the source S
and travels toward a target T as shown in Fig. 1�b�. The
node. which is the current message holder, transfers the mes-
sage to the node nearest to itself in the direction which mini-
mizes the distance to the target. If the node lies in the influ-
ence area of a hub, it sends the message directly to the hub.
If the current message holder is a hub, it sends the message
to the node or hub, which is connected to itself, and mini-
mizes the distance to the target. For the Waxman network,
again the message travels from source to target via nodes
which send the message along the connections which mini-
mize the distance to the target. When a message arrives at its
target it is removed from the network. As mentioned earlier,
the message processing capacity of all hubs and nodes is
assumed be unity, and parallel updates are carried out. There-
fore, during multiple message transfer, if the would be re-
cipient node or hub is occupied, then the message waits for a
unit time step at the current message holder. If the desired
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FIG. 1. �Color online� �a� The figure shows a Waxman topology network generated by connecting 55 points by the Waxman algorithm
for �=0.05 and �=0.1 on a 10�10 lattice. The number of links increases as the values of � and � are increased. �b� A regular two-
dimensional lattice. X is an ordinary node with nearest-neighbor connections. Each hub has a square influence region �as shown for the hub
Y�. A typical path from the source S to the target T is given by the path S-1-2-3-¯ -7-P-8-¯ -11-Q-12-¯ -T. After the implementation of
the gradient mechanism, the distance between G and F is covered in one step as shown by the link g and a message is routed along the path
S−1−2−3−G−g−F−4−5−6−T. �c� A 1D ring lattice of ordinary nodes �X� with nearest-neighbor connections and randomly distributed
hubs �Y�.
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node is still occupied after the waiting time is over, the cur-
rent node selects any unoccupied node from its remaining
neighbors and hands over the message. If all the neighboring
nodes are occupied, the message waits at the current message
holder until one of them is free.

Clearly, when many messages travel on the network, the
finite capacity of the hubs can lead to the trapping of mes-
sages in their neighborhoods and a consequent congestion or
jamming of the network. Here, we study a situation where
Nm messages are deposited at regular intervals on the net-
work. If the message deposition takes place faster than the
rate at which messages clear, the network can congest �14�.
The numbers of messages N�t� which are flowing on both the
2D lattices as a function of a time t are plotted in Fig. 2.
Here, Nm=100 messages are deposited every 120th time step
for a given run time. For these parameters, the networks get

congested and N�t� gets saturated indicating the formation of
transport traps as seen in �8�. The reasons for trapping in-
clude the opposing movement of messages from sources and
targets situated on different sides of the lattice, as well as
edge effects.

A variety of decongestion mechanisms can be set up for
these lattices. An efficient way of decongesting the clustered
lattice has turned out to be the gradient mechanism �8�. This
is implemented by identifying the hubs with the five highest
values of CBC �15�, assigning them capacity proportional to
their CBC values, and setting up a gradient connection to the
hub with the highest capacity. Messages can now travel
along the gradient connection. The transition to the con-
gested phase occurs for a much larger number of messages
�or more frequent rates of deposition�, once the gradient
strategy is implemented.

The number of messages that are trapped �NT� on the
network for a given posting rate �Nm messages at every �
time steps� can indicate the level of congestion on the lattice.
We plot NT on the two networks as a function of the number
of messages Nm deposited at every �=120, 150, 200, 250
time steps for the baseline mechanism �Fig. 3�a�� and the
gradient mechanism �Fig. 3�b�� for run times of 60 000 steps
and the Waxman topology network �Fig. 3�c�� for a run time
of 90 000 steps, respectively. Here we choose Nm in the
range 20�Nm�300. It is evident that even for smaller val-
ues of Nm, the two networks congest if messages are posted
at every 120 or 150 time steps. However, a clear
decongestion-congestion transition is seen if messages are
posted at every 200 or 250 time steps since the number of
trapped messages NT=0 if Nm�100 indicating a decon-
gested phase for the network. If Nm�100 the value of NT
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FIG. 2. �Color online� The figure shows the number of messages
N�t� flowing on the lattice as a function of time t for �a� the Wax-
man topology network and the baseline mechanism for �b� the lo-
cally clustered 2D lattice and �c� the 1D ring network.
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FIG. 3. �Color online� Figure shows the plot of number of trapped messages NT as a function of the number of Nm messages deposited
at every �=120, 150, 200, 250 time steps for �a� baseline and �b� gradient mechanism on locally clustered network and �c� Waxman topology
network ��=�=0.05�.
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increases and goes toward saturation indicating the con-
gested phase of the network. It should also be noted that for
both the congested and decongested regime, the gradient
mechanism is more efficient than the baseline mechanism.
The number of messages trapped in the gradient mechanism
is much less than that of the baseline mechanism for the
same values of Nm and �.

III. STATISTICAL CHARACTERIZERS OF TRANSPORT

We can now identify the statistical characterizer of the
congested and decongested phase for these two networks.
This turns out to be the travel time distribution. Here the
travel time is the total travel time of messages including the
time each message waits on all the nodes to be delivered to
adjacent node along the path of their journey to respective
targets. For the Waxman topology network if messages are
fed on the system at a constant rate of Nm=100 messages at
every 120 time steps for Nw=100 and total run time of
90 000, messages are not delivered to their targets and the
network is in the congested phase. For the locally clustered

2D network we allow Nm=100 messages be deposited at
every 120 time steps on a 100�100 lattice with Dst=142,
for 100 hubs and total run time of 60 000. At this value of Nm
many messages remain undelivered in the lattice due to the
onset of traps and the system is in the maximal congested
regime. The travel time distribution for this congested phase
for both these networks is shown in Fig. 4. The travel time
distribution can be fitted by a Gaussian of the form

P�t� =
1

��2	
exp�−

�t − 
�2

2�2 � . �2�

If 100 messages are fed continuously at every 200 time steps
all the messages get delivered to their targets for both cases,
and the data for the travel time distribution can be fitted by a
logarithmic normal distribution of the form

P�t� =
1

t��2	
exp�−

�ln t − 
�2

2�2 � . �3�

Thus it is evident that during the congested phase the travel
time distribution for messages deposited at a constant rate in
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FIG. 4. �Color online� For �a�–�c� the travel time and waiting time distributions in the congested phase shows a Gaussian distribution. For
�d�–�f� the distributions change to a logarithmic normal in the decongested phase. The values of � and �2 are given in Table I. Here, �a�, �d�,
�c�, and �f� correspond to the network with nodes and hubs, and �b� and �e� to the Waxman networks.
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the network, shows Gaussian behavior �Figs. 4�a� and 4�b��.
On the other hand log-normal behavior is found during the
decongested phase �Figs. 4�d� and 4�e��. The decongestion-
congestion transition occurs at a much higher value once the
gradient strategy is implemented. Here again, the decon-
gested phase shows a logarithmic normal distribution of
travel times, and the normal phase shows a Gaussian distri-
bution of travel times. The values of � and �2 for the fits
in Fig. 4 are shown in Table I. Similar results are seen for
other decongesting strategies, such as connecting the hubs of
high CBC by random assortative connections �7�. The wait-
ing time distribution of the system, where the waiting time is
defined to be the time for which the messages wait at con-
gested nodes, also show an identical signature of the
congestion-decongestion transition �Figs. 4�c� and 4�f��.

A. Phase diagram

The phase diagram of the system can be inferred from the
behavior of the plot of the number of messages trapped �NT�
as a function of posting rate. As mentioned earlier, these are
plotted for Nm=25, 50, 75, 100, 125 messages �Fig. 5� de-
posited at regular intervals of � time steps �100���250�
for the baseline mechanism �Fig. 3�a��, the gradient mecha-
nism �Fig. 3�b��, and the Waxman topology network �Fig.
3�c��, respectively. It is observed that for higher values of �
the number of trapped messages decreases and NT=0 for �
=�c and above. The values of �c for different values of Nm,
for the baseline mechanism, are listed in Table II.

We use Table II to plot the phase diagram for congestion-
decongestion transition for the baseline mechanism in the

TABLE I. The table shows the value of � and �2 for the Fig. 4.
Here � is the standard deviation and �2 is the chi-squared test for
accuracy of the fit. The third, fourth, and fifth rows correspond to
the Waxman graphs at the indicated values of � and �.

Network Models Congested phase Decongested phase

Baseline �P�t�� �=567.31 ��2=0.195� �=0.113 ��2=0.075�
Gradient �P�t�� �=64.07 ��2=0.026� �=0.122 ��2=0.075�
�=0.05, �=0.05 �=850.37 ��2=0.463�
�=0.4, �=0.05 �=1576 ��2=0.852� �=0.06 ��2=0.066�
�=0.4, �=0.4 �=0.062 ��2=0.06�
Baseline �P�w�� �=560 ��2=0.2� �=0.056 ��2=0.04�
Gradient �P�w�� �=60 ��2=0.02� �=0.05 ��2=0.04�
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FIG. 5. �Color online� The plot of number of messages trapped on the lattice when Nm=25, 50, 75, 100, 125 messages are deposited at
regular intervals of � �a� baseline and �b� gradient mechanism on locally clustered network and �c� Waxman topology network ��=�
=0.05�.

TABLE II. The table shows the value of �c for different values
of Nm for the baseline mechanism.

Nm �c

5 110

10 155

25 165

50 175

75 190

100 200

125 250

150 305

175 390

200 630
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locally clustered 2D lattice as shown in Fig. 6. Obviously, for
a given value of Nm, the system is in the decongested state
for values of ���c and in the congested phase for ���c.
The statistical characterizers of the system accurately pick up
the phase of the system.

We choose two values of Nm for different values of � and
evaluate the travel time distribution for these �the points cho-
sen are indicated by solid circles in Fig. 6�. It can be seen
that for Nm=25, �=100 and Nm=175, �=250 the system
is in the congested phase and the travel time distributions can
be fitted by a Gaussian �Fig. 7�a��. However for Nm
=25, �=200 and Nm=175, �=500 the system attains de-
congestion and the travel time distributions show
logarithmic-normal behavior �Fig. 7�b��. Thus, the travel
time distributions carry the signature of congestion or decon-
gestion. Similar phase diagrams can be constructed for the
Waxman and gradient cases as well, with similar results.

B. 1D ring lattice

All the networks discussed above are based on two-
dimensional lattices. Similar results can also be shown in the

context of a one-dimensional version of the communication
network of nodes and hubs. The base network is a ring lattice
of size L with nearest-neighbor interaction. Hubs are distrib-
uted randomly in the lattice where each hub has 2k nearest
neighbors �Fig. 1�c��. As in the 2D lattice no two hubs are
separated by a less than a minimum distance, dmin=1. In our
simulation we have taken k=4 although Fig. 1�c� illustrates
only k=2 connections. The distance between a source and
target is defined by the Manhattan distance Dst= �is− it�. If a
message is routed from a source S to a target T on this lattice
through the baseline mechanism, it takes the path S−1−2
−Y −3−4−5−T as in Fig. 1�c�. The routing algorithm is
same as that used in the 2D model �7,8�. A given number Nm
of source and target pairs start sending Nm messages continu-
ously at every 100 time steps for a total run time of 30 000.
The plot of N�t� as a function of time t for this lattice �Fig.
2�c�� attains saturation for t	108.

The travel time is calculated for a source-target separation
of Dst=2000 on a L=10 000 ring lattice and averaged over
1000 hub realizations. For the baseline mechanism, where
network congests at these values, the data for travel time
distribution can be fitted by a Gaussian �Fig. 8�a��. If the
hubs are connected by the assortative mechanism, all the
messages are cleared, and the distribution can be fitted well
by a logarithmic-normal function with a power-law correc-
tion of the form

P�t� =
1

t��2	
exp�−

�ln t − 
�2

2�2 ��1 + Bt−�� , �4�

as shown in Fig. 8�b�.
Thus if the hubs are connected by assortative mecha-

nisms, there is no congestion, and the leading behavior is
logarithmic normal as in the decongested case of the 2D
networks. An additive power-law correction is seen due to
the 1D nature of the network. Due to the ring geometry of
the network, some messages are not routed through the links
created due to the assortative connections between hubs.
These messages thus have larger travel times and contribute
additive power-law corrections to the basic logarithmic-
normal behavior in the decongested phase.

C. Stochastic process for transport

It is clear that the displacement of a message on the net-
work depends on factors that are partly systematic, and
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partly random, with the random element arising due to inter-
ference from other messages and limitations of hub capacity.
Hence, message transfer in both the congested and decon-
gested phases can be modeled by stochastic differential equa-
tions. In the congested phase, the displacement Xt of the
message at a time t can be modeled by the equation

dXt = 
�Xt�dt + ��Xt�dWt. �5�

Here, 
�Xt� represents the drift coefficient, ��Xt� is the dif-
fusion coefficient and Wt is a Wiener process. The probabil-
ity distribution f�X , t� satisfies the forward Kolmogorov
equation

� f

�t
=

��
�X�f�X,t��
�X

+
�2

�X2 ��2�X�f�X,t�� . �6�

The stationary solution, i.e., �f
�t =0 can be found using

Wright’s formula �16�

f�x� =
N

�2

−

x 
�s�
�2�s�

ds , �7�

where N is a normalization constant and 
 and � are the drift
and diffusion coefficient defined above. If the drift coeffi-
cient is of the form 
�Xt�= �
̄−Xt� and the diffusion coeffi-
cient ��Xt� is a constant, then, the stationary probability dis-
tribution f�X� turns out be of the normal form

f�x� =
1

��2	
exp −

�X − 
̄�2

2�2 . �8�

On the other hand, in the decongested phase, the process can
be modeled by the equation

dXt = 
�Xt�Xtdt + �XtdWt. �9�

Now if we define S�X�=log�X�, then Eq. �9� can be rewritten
in terms of the variable S�x� and reduced to the form of Eq.
�5�. Then, using the transformation f�X�= f�S� dS

dX , we find the
form of f�X� in the decongested phase to be of the
logarithmic-normal form

f�X� =
1

�X�2	
exp −

�ln X − 
̄�2

2�2 . �10�

Here, we assume the drift and diffusion constants to have the
same forms as in the congested phase. Thus, the stochastic
equation in the congested phase is governed by a stochastic
process of the Brownian type, whereas that in the decon-
gested phase is governed by a process of the geometric
Brownian type. We note that the behavior in the decongested
phase has been modeled earlier by a geometric Brownian
process in Ref. �17�, and the resulting logarithmic-normal
distributions have been compared with the internet latencies.
The latencies or travel times are directly proportional to the
displacements. Thus the normal and logarithmic-normal dis-
tributions of the travel times in the congested and decon-
gested phases have the forms in Eqs. �8� and �10�. The
change in the nature of the distribution arises from the fact
that the nature of the noise is different in the two phases,
being linear multiplicative in the decongested phase and ad-
ditive in the congested phase. Our analysis is valid in arbi-
trary dimensions.

IV. CONCLUSION

To summarize, the statistical characterizers of the commu-
nication networks studied here, viz. the travel time distribu-
tions show the characteristic signatures of the congested or
decongested state of the network being normal in the con-
gested phase and logarithmic normal in the decongested
phase. The results are true for the locally clustered commu-
nication network as well as the Waxman topology network
and also carry over to a one-dimensional lattice to leading
order. Thus the travel time distribution is a robust character-
izer of the congested or decongested phase. For the 1D lat-
tice, the distribution carries an additional signature of the
topology in the form of an additive power-law correction to
the leading order. The waiting time distributions carry iden-
tical signatures of the congested and decongested phase.
These results are valid for different lattice sizes and hub
densities as well �18�. The displacement of the message can
be modeled by stochastic equations with linear drift. The
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FIG. 8. �Color online� The plot of travel time distribution of messages for the 1D ring lattice shows �a� Gaussian distribution in the
congested phase. The standard deviation � is �i� 13.86 ��2=0.0086� for Nm=100 and 400 hubs �ii� 10.21 ��2=0.0095� for Nm=50 and 200
hubs. �b� Logarithmic-normal behavior with a power-law correction is seen in the decongested phase. �i� Nm=100 and 400 hubs, �=1.42
��2=0.14�, �=0.88, B=−0.0009 and �i� Nm=50 and 200 hubs, �=1.79 ��2=1.75�, �=0.91, B=−0.0009.

STATISTICAL CHARACTERIZERS OF TRANSPORT IN… PHYSICAL REVIEW E 81, 046109 �2010�

046109-7



noise term in the equation is additive in the congested phase
and linear multiplicative in the decongested phase, leading to
the normal and logarithmic-normal distributions observed in
the congested and decongested phases.

We note that model networks based on two-dimensional
geometries considered by other authors have been observed
to show congestion-decongestion transitions �10,11,19�. It
has also been noted that the nature of the congestion transi-
tion depends on the type of routing rules �20� which also
affect network performance and traffic fluctuations �21,22�.
Minimal models of traffic flow utilizing random walks have
also been proposed �23�. We hope to explore the utility of
our characterizers for these phase transition situations in fu-
ture work.

Finally, several two-dimensional model networks demon-
strate traffic characteristics similar to those seen for the in-
ternet �11,24�. Additionally, networks that incorporate geo-
graphic clustering and encounter congestion problems arise
in many practical situations e.g., cellular networks �25� and
air traffic networks �26�. Logarithmic-normal latencies have
been associated with the decongested phase of the internet
and have been analyzed using stochastic models �17�. Our
results can therefore have relevance in real life contexts.
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